

Canvas EO APIs

New EFL interfaces
Images, Containers and Window APIs cleanup

EFL developers days 2016
Jean-Philippe ANDRE

2016/05/14
Paris

Scope

● Images
● Windows
● Containers
● Lunch

Canvas Images

● Legacy:
– evas_object_image_[filled_]add()

● File images
● Proxies with source object
● GL view (Evas GL)
● 3d view (Evas 3d)
● Snapshot objects
● Native surfaces (Xpixmap, EGLImage, …)

Canvas Image

● One object that does everything
– Huge number of APIs (82 + object apis)

– Complex internal code
● Some of the genericity is good, some is excessive

– Various “types” of image objects
● Many APIs valid for a certain type only
● Potentially confusing to use

Canvas Image

● Why splitting?
– Potentially improving the internal code

– Common set of interfaces for all images
● But remove excess fluff

– Simplify the API set for each image type
● Eg. snapshot has no custom method

Canvas Image

● Evas.Image (internal)
– Efl.Canvas.Image

● file_set

– Efl.Canvas.Proxy

– Efl.Canvas.Scene3d

– Efl.Canvas.Snapshot

– Efl.Canvas.Surface.{Tbm,X11,Wayland}
● Native surfaces, limited to C/C++

Canvas Image

Canvas Image

Canvas Image

● Legacy data_set/get
– Dual meaning:

● External pointer data
● Get internal pixel data

– Call set to release pointer

● Map/unmap
– convert colorspaces

– region mapping

– proxy image contents, GL view content, etc…
● Direct GL map or glReadPixels

– buffer_data_set for external data

Canvas Image

● Remaining issues (TODO):
– map/unmap not implemented in some cases:

● GL engine (TODO)
● YUV & other planar formats (need API redesign)

– async file set API (TODO)
● Eina Promise
● Fake it till you make it

– Use & test the new APIs
● Legacy still works, apparently...

– Anything else?

UI Image

● Efl.Ui.Image
– Elementary Image

– Icon is a property of Efl.Ui.Image

– Thumb & Photo are legacy-only (aka. Dead)

– New scaling API

UI Image

● New scaling API
– Center, fit_inside, fit_outside, fill

– Scale up, down

Interlude #1

Windows

● Merge all canvases:
– evas

– ecore_evas

– elm_win

● All work together and share APIs
– Unify under a single Window class

Windows

● Merging
– No actual code merge

● Different libs, lots of complex & fragile code

– Add missing APIs from Evas to Window

Windows

● API merge
– Evas

– Ecore Evas

– Elementary Window

– Conformant
● Indicator, quickpanel, virtual keyboard

– IMF (todo)

● Input events redesign

Windows

● Questions
– Which parts?

● Keep stack model (resize_object_add)
● “bg” + “content” only

Windows

● Naviframe is dead, long live… uh… windows
– Naviframe items → windows

– Compositor handles stacking
● Multiple apps in same stack

● Elm Flip becomes linear container
– In-app view stack

– Can replace naviframe

Input Events

● Origins and targets:
– Ecore (X, drm, …)

– Evas

– Evas Object

– Elm Gesture

● Different mechanisms
– Ecore events, Function calls, Evas events, ...

● Different event info structs

Input Events

● Unify all events types with EO
● EO events everywhere

– Ecore → Evas → Objects

● Event info data is an EO
– Extensibility

– Raw & high level properties

– Private event data shared across EFL internals

Input Events

● Raw events
– Mouse move/down/up/in/out, wheel, etc...

– Resampled values preferred
● Raw timestamps & position available

– Event origin & device

● High level events
– Clicks, gestures

Input Events

● Reality hits
– Legacy behaviour unmodifiable
– Pointer event vs. mouse move, down, up, ...
– Use legacy functions to send events

● Add “reserved” field to carry EO data

● Current (W.I.P.)
– Ecore → (event) → Ecore Input Evas → (func) → Ecore Evas

→ (eo_event) → Evas → (legacy evas event) → Evas Object

– Evas event info ↔ Eo pointer event

Input Events

● Questions / TBD
– Unify all events?

● Only one pointer event

– Keep similar behaviour?
● Mouse move/down/up, multi move/down/up, …
● Only change event_info to be Pointer Event data

– Gestures & high level events?

– Resampling & smoothing
● input vs. screen refresh rates

Interlude #2

Containers

● Box
● Table
● Grid
● Edje & Elm Layout

– Edje Box & Edje Table

● Widgets, window, …

● Not for genlist (Efl.Model based)
– Maybe some APIs can be covered

Pack API

● Unify all container APIs
● Contents

– Named parts

– Elements

● Containers
– Slots: parts

– Linear: 1d

– Grid: 2d (3d)

Pack API

● New features
– Requested size hint (vs. content min hint)

● TODO: proper EO API

– Custom table/grid layout functions (& box)

– Linear append in tables

Pack API

Pack API (proposal)

Pack API

● Custom Layouts
– Class inherit

● → Implement layout func

– Layout Engine
● → @class function
● Used as poor man's function pointer

– On-the-fly set
– Or object class (eg. Efl.Ui.Box.Flow)

Interlude #3

Controversy

● Not yet time for lunch!

● Part API debacle
– Review of alternatives

– Conclude on preferred solution

EFL Part APIs

● 1. Part argument
– @optional

● Last arg

– C macros

● Pros
– Straighforward

– Good for bindings

● Cons
– “Leaks” part name in

too many APIs
– Where is part needed?

EFL Part APIs

● 2. eo_part
– Core EO feature

– Same as eo_super

● Pros
– Core feature

– No object leak

– No API leak

● Cons
– Extra bit / bit reuse
– Manual mapping to bindings
– Not a real object
– Locks

EFL Part APIs

● 3. Get real object
– Evas Text, Box, …

● Pros
– Same functions as

real object

– Out of the box

● Cons
– Direct access to parts

– No API control or stability

– Evas objects are internals

EFL Part APIs

● 4. Proxy object
– EO object

– Part name and
container EO

– Created on the fly

● Pros
– No API leak

– Restricted API set

● Cons
– None, obviously

EFL Part APIs

● @jpeg's implementation:
– Edje & Elm Layout: BOX + TABLE

– Uses a proxy object
● Created on the fly in efl_content_get
● References part name (string) and container (Eo*)
● Never dies
● Manual implementation of proxy functions
● eo_unref / eo_del kills it

– Wait, what?

EFL Part APIs

● efl_pack(efl_content_get(layout, “box”), obj);

● Eo *box = efl_content_get(layout, “box”);
● efl_pack(box, obj1);
● efl_pack(box, obj2);
● eo_unref(box);

EFL Part APIs

Eo *box = efl_content_get(layout, “box”);

efl_pack(box, obj1);

trouble(layout);

efl_pack(box, obj2);

eo_unref(box);

trouble (layout) {

Eo *box = efl_content_get(layout, “box”);

eo_unref(box);

}

EFL Part APIs

● 5. @tasn's proposal
– Same proxy object

– Temporary object

– Valid for 1 call
● Implicit unref

● Pros
– Same as above

– Clear lifecycle

● Cons
– EO object (perf?)

– Extra work for @jpeg

EFL Part APIs

● efl_pack(efl_part(layout, “box”), obj);

● Eo *box = eo_ref(efl_part(layout, “box”));
● efl_pack(box, obj1);
● efl_pack(box, obj2);
● eo_unref(box);

Time for lunch

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

