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Scope

● Images
● Windows
● Containers
● Lunch



  

Canvas Images

● Legacy:
– evas_object_image_[filled_]add()

● File images
● Proxies with source object
● GL view (Evas GL)
● 3d view (Evas 3d)
● Snapshot objects
● Native surfaces (Xpixmap, EGLImage, …)



  

Canvas Image

● One object that does everything
– Huge number of APIs (82 + object apis)

– Complex internal code
● Some of the genericity is good, some is excessive

– Various “types” of image objects
● Many APIs valid for a certain type only
● Potentially confusing to use



  

Canvas Image

● Why splitting?
– Potentially improving the internal code

– Common set of interfaces for all images
● But remove excess fluff

– Simplify the API set for each image type
● Eg. snapshot has no custom method



  

Canvas Image

● Evas.Image (internal)
– Efl.Canvas.Image

● file_set

– Efl.Canvas.Proxy

– Efl.Canvas.Scene3d

– Efl.Canvas.Snapshot

– Efl.Canvas.Surface.{Tbm,X11,Wayland}
● Native surfaces, limited to C/C++



  

Canvas Image



  

Canvas Image



  

Canvas Image

● Legacy data_set/get
– Dual meaning:

● External pointer data
● Get internal pixel data

– Call set to release pointer

● Map/unmap
– convert colorspaces

– region mapping

– proxy image contents, GL view content, etc…
● Direct GL map or glReadPixels

– buffer_data_set for external data



  

Canvas Image

● Remaining issues (TODO):
– map/unmap not implemented in some cases:

● GL engine (TODO)
● YUV & other planar formats (need API redesign)

– async file set API (TODO)
● Eina Promise
● Fake it till you make it

– Use & test the new APIs
● Legacy still works, apparently...

– Anything else?



  

UI Image

● Efl.Ui.Image
– Elementary Image

– Icon is a property of Efl.Ui.Image

– Thumb & Photo are legacy-only (aka. Dead)

– New scaling API



  

UI Image

● New scaling API
– Center, fit_inside, fit_outside, fill

– Scale up, down



  

Interlude #1



  

Windows

● Merge all canvases:
– evas

– ecore_evas

– elm_win

● All work together and share APIs
– Unify under a single Window class



  

Windows

● Merging
– No actual code merge

● Different libs, lots of complex & fragile code

– Add missing APIs from Evas to Window



  

Windows

● API merge
– Evas

– Ecore Evas

– Elementary Window

– Conformant
● Indicator, quickpanel, virtual keyboard

– IMF (todo)

● Input events redesign



  

Windows

● Questions
– Which parts?

● Keep stack model (resize_object_add)
● “bg” + “content” only



  

Windows

● Naviframe is dead, long live… uh… windows
– Naviframe items → windows

– Compositor handles stacking
● Multiple apps in same stack

● Elm Flip becomes linear container
– In-app view stack

– Can replace naviframe



  

Input Events

● Origins and targets:
– Ecore (X, drm, …)

– Evas

– Evas Object

– Elm Gesture

● Different mechanisms
– Ecore events, Function calls, Evas events, ...

● Different event info structs



  

Input Events

● Unify all events types with EO
● EO events everywhere 

– Ecore → Evas → Objects

● Event info data is an EO
– Extensibility

– Raw & high level properties

– Private event data shared across EFL internals



  

Input Events

● Raw events
– Mouse move/down/up/in/out, wheel, etc...

– Resampled values preferred
● Raw timestamps & position available

– Event origin & device

● High level events
– Clicks, gestures



  

Input Events

● Reality hits
– Legacy behaviour unmodifiable
– Pointer event vs. mouse move, down, up, ... 
– Use legacy functions to send events

● Add “reserved” field to carry EO data

● Current (W.I.P.)
– Ecore → (event) → Ecore Input Evas → (func) → Ecore Evas 

→ (eo_event) → Evas → (legacy evas event) → Evas Object

– Evas event info ↔ Eo pointer event



  

Input Events

● Questions / TBD
– Unify all events?

● Only one pointer event

– Keep similar behaviour?
● Mouse move/down/up, multi move/down/up, …
● Only change event_info to be Pointer Event data

– Gestures & high level events?

– Resampling & smoothing
● input vs. screen refresh rates



  

Interlude #2



  

Containers

● Box
● Table
● Grid
● Edje & Elm Layout

– Edje Box & Edje Table

● Widgets, window, …

● Not for genlist (Efl.Model based)
– Maybe some APIs can be covered



  

Pack API

● Unify all container APIs
● Contents

– Named parts

– Elements

● Containers
– Slots: parts

– Linear: 1d

– Grid: 2d (3d)



  

Pack API

● New features
– Requested size hint (vs. content min hint)

● TODO: proper EO API

– Custom table/grid layout functions (& box)

– Linear append in tables



  

Pack API



  

Pack API (proposal)



  

Pack API

● Custom Layouts
– Class inherit

● → Implement layout func

– Layout Engine
● → @class function
● Used as poor man's function pointer

– On-the-fly set
– Or object class (eg. Efl.Ui.Box.Flow)



  

Interlude #3



  

Controversy

● Not yet time for lunch!

● Part API debacle
– Review of alternatives

– Conclude on preferred solution



  

EFL Part APIs

● 1. Part argument
– @optional

● Last arg

– C macros

● Pros
– Straighforward

– Good for bindings

● Cons
– “Leaks” part name in 

too many APIs
– Where is part needed?



  

EFL Part APIs

● 2. eo_part
– Core EO feature

– Same as eo_super

● Pros
– Core feature

– No object leak

– No API leak

● Cons
– Extra bit / bit reuse
– Manual mapping to bindings
– Not a real object
– Locks



  

EFL Part APIs

● 3. Get real object
– Evas Text, Box, …

● Pros
– Same functions as 

real object

– Out of the box

● Cons
– Direct access to parts

– No API control or stability

– Evas objects are internals



  

EFL Part APIs

● 4. Proxy object
– EO object

– Part name and 
container EO

– Created on the fly

● Pros
– No API leak

– Restricted API set

● Cons
– None, obviously



  

EFL Part APIs

● @jpeg's implementation:
– Edje & Elm Layout: BOX + TABLE

– Uses a proxy object
● Created on the fly in efl_content_get
● References part name (string) and container (Eo*)
● Never dies
● Manual implementation of proxy functions
● eo_unref / eo_del kills it

– Wait, what?



  

EFL Part APIs

● efl_pack(efl_content_get(layout, “box”), obj);

● Eo *box = efl_content_get(layout, “box”);
● efl_pack(box, obj1);
● efl_pack(box, obj2);
● eo_unref(box);



  

EFL Part APIs

Eo *box = efl_content_get(layout, “box”);

efl_pack(box, obj1);

trouble(layout);

efl_pack(box, obj2);

eo_unref(box);

trouble (layout) {

Eo *box = efl_content_get(layout, “box”);

eo_unref(box);

}



  

EFL Part APIs

● 5. @tasn's proposal
– Same proxy object

– Temporary object

– Valid for 1 call
● Implicit unref

● Pros
– Same as above

– Clear lifecycle

● Cons
– EO object (perf?)

– Extra work for @jpeg



  

EFL Part APIs

● efl_pack(efl_part(layout, “box”), obj);

● Eo *box = eo_ref(efl_part(layout, “box”));
● efl_pack(box, obj1);
● efl_pack(box, obj2);
● eo_unref(box);



  

Time for lunch
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